2.2: The Derivative Function

Definition: For a function f, we define the derivative function, f^{\prime}, by
$f^{\prime}(x)=$ Instantaneous rate of change of f at $x=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

Example 1: Estimate the derivative of the function $f(x)$ below at $x=$ $-2,-1,0,1,2,3,4,5$.

x	-2	-1	0	1	2	3	4	5
Derivative at x								

Now we can draw the derivative of f.

Example 2: Consider the graph of f below. Which of the graphs (a)-(c) is a graph of the derivative, f^{\prime} ?

(a)

(b)

(c)

The derivative of a graph, f^{\prime}, can tell us a few things about the graph of f itself:

If $f^{\prime}>0$ on an interval, then f is increasing on that interval.
If $f^{\prime}<0$ on an interval, then f is decreasing on that interval.
If $f^{\prime}=0$ on an interval, then f is constant on that interval.

Example 3: A child inflates a balloon, admires it for a while and then lets the air out at a constant rate. If $V(t)$ gives the volume of the balloon at time t, then below is the graph of $V^{\prime}(t)$ as a function of t. At what time does the child:
(a) Begin to inflate the balloon?
(b) Finish inflating the balloon?
(c) Begin to let the air out?
(d) What would the graph of $V^{\prime}(t)$ look like if the child had alternated between pinching and releasing the open end of the balloon, instead of letting the air out at a constant rate?

